Conformal Dimension and the Quasisymmetric Geometry of Metric Spaces

نویسندگان

  • John M. Mackay
  • Bruce Kleiner
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometry and Quasisymmetric Parametrization of Semmes Spaces

We consider decomposition spaces R/G that are manifold factors and admit defining sequences consisting of cubes-with-handles of finite type. Metrics on R/G constructed via modular embeddings of R/G into a Euclidean space promote the controlled topology to a controlled geometry. The quasisymmetric parametrizability of the metric space R/G×R by R for any m ≥ 0 imposes quantitative topological con...

متن کامل

Metric and periodic lines in the Poincare ball model of hyperbolic geometry

In this paper, we prove that every metric line in the Poincare ball model of hyperbolic geometry is exactly a classical line of itself. We also proved nonexistence of periodic lines in the Poincare ball model of hyperbolic geometry.

متن کامل

Quasisymmetric parameterizations of two-dimensional metric planes

The classical uniformization theorem states that any simply connected Riemann surface is conformally equivalent to the disk, the plane, or the sphere, each equipped with a standard conformal structure. We give a similar uniformization for Ahlfors 2regular, linearly locally connected metric planes; instead of conformal equivalence, we are concerned with quasisymmetric equivalence.

متن کامل

Quasiconformal Geometry of Monotone Mappings

This paper concerns a class of monotone mappings in a Hilbert space that can be viewed as a nonlinear version of the class of positive invertible operators. Such mappings are proved to be open, locally Hölder continuous, and quasisymmetric. They arise naturally from the Beurling-Ahlfors extension and from Brenier’s polar factorization, and find applications in the geometry of metric spaces and ...

متن کامل

Hermitian metric on quantum spheres

The paper deal with non-commutative geometry. The notion of quantumspheres was introduced by podles. Here we define the quantum hermitianmetric on the quantum spaces and find it for the quantum spheres.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008